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Tracer dispersion in two-dimensional rough fractures
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Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are
studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann
approach, using a boundary condition for tracer particles that improves the accuracy of the method. The
reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different
fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient
in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied
when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a
lateral shift as well. Numerical results are analyzed usingAhparameter, related to convective transport
within the fracture, and simple arguments based on lubrication approximation. At very et Rember, in
the case where fracture surfaces are laterally shifted, we show using several different methods that convective
transport reduces dispersion.
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[. INTRODUCTION After reviewing some basic facts about self-affine sur-
faces(Sec. V), we investigate, in Sec. V, how the complex
Tracer spreading in flows between parallel walls has regeometry of fracture surfaces affects the diffusive transport
ceived considerable attention since the celebrated work dfzero mean flow velocity We also study the dependence of
Taylor [1]. This problem is of fundamental importance in a diffusivity on the size of the gap between complementary
variety of fields and, in particular, transport processedracture surfaces. We will show that it is possible to derive
through artificial or natural porous media. In general, thean analytic expression, which accounts for the geometric ef-
dispersion of a tracer carried along by a flowing fluid in afects on the diffusivity, in the limiting case where the rough-
medium of disordered structure, such as hydrocarbon or waness associated with the fracture surface is small compared
ter reservoirs, involves a combination of convection and disto the mean aperture.
persion through the microscopic pore space of the rock itself |n Sec. VI we study dispersive transport in two different
and through macroscopic channels such as fractures. In thgyations: first, when the two surfaces are simply displaced
simplest case of Poiseuille flow in a Hele-Shaw cell, WhiChnormaIIy to the mean fracture plane. In this case, we will
in several applications is used to model fract2s5], the gy that a description in terms of a parameterrelated to

vgnishing veI(_)cit_y near,the solid gives rise to a large diSperEjynamically connectegore space, accounts for a large part
sion, quadratic in the et number[1,6]. However, one of the dispersion enhancement due to low-velocity zones in

frequently encounters systems |n_wh|c_h the channel aperturt%e fracture channel. Second, we show that when there is a
varies along the flow direction or in which the channel walls

. S . ral shi well normal displacement, an incr in
have some rugosity. This is the case for fractured rocks, i ateral shift as well as a normal displacement, an increase

which fractured boundaries can be usually described as Cop_lspersmn IS ot_)talrjeq._Flnally, we present a result sho_wmg
related, self-affine fractal§7]. The roughness exponent is that d!spersmn is dlmlnl_shed in the presence of convection at
usually found to be close to 0.8 and to be insensitive to thdoW Peclet numbers. This effect is found when the surfaces
material and to the fracturing procef&-10. Most of the &€ shifted and the convective transport is weak enough.
studies dealing with varying channel aperture model the fluc-

tuations as slowly varying periodic functiof$l]. Only a

few works deal with more realistic models of fractures, such Il. LATTICE-BOLTZMANN MODEL

as random rugosities perpendicular to the fld&] or self- WITH THE BGK COLLISION OPERATOR

affine fracture§13,14. . . .

In the present paper we present numerical simulations of Our gpal Is to S‘“‘?'Y various aspects of transport n frac-
tracer diffusion and dispersion in self-affine fractures. ThetUres which are sensitive to the fracture roughness. Since we
simulations are two dimensional and the fluid flow and trace€OnSider convection and dispersion in a highly irregular ge-
spreading are computed using the lattice-Boltzm4iR) ometry, the lattice-Boltzmann methdt5—17 is particularly
method. We will first discuss, in Sec. Il, the implementationconvenient. In this algorithm, fictitious particles move be-
of the LB method to simulate diffusive transport. We shalltween neighboring sites on a lattice, with suitable collision
propose a boundary condition which improves the accuracyules, and the boundary of the flow domain is simply a sur-
and validity of the method, particularly when describing nar-face of sites where boundary condition rules should be im-
row fractures. In Sec. Il we will evaluate this boundary con-posed. We use a version of the LB model first proposed by
dition against previous ones in two different cases: DiffusionQian et al.[18], with a cubic lattice in 3 dimensions and 19
(Sec. Il A) and Taylor dispersion(Sec. Il B) in a two-  velocities(D3Q19 in the terminology of18]). The collision
dimensional straight channel. operator is approximated by a single relaxation parameter
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the Bhatnagar-Gross-KrodBGK) model[19], and the local
equilibrium distribution given in[18] is used. This pseu- ><
doequilibrium distribution locally preserves mass and mo-
mentum values, and is formulated specifically to recover the
Navier-Stokes equation at large length and time scales. As
usual, we use the lattice spacing as the unit length and the

time step in the simulations as the unit time. In the following, - >< - .
guantities will be measured in terms of the lattice spacing
and simulation time step. Note that, since we are concerned
with incompressible flows, we do not need to introduce a

dimension of mass.

The model used for miscible fluids is a straightforward . . . O
extension of the model restricted to describe simple fluids.
Following the convention of Rothman and Zalegk6|, we
will distinguish between particle types by assuming that the
particles are colored. The pseudo equilibrium color distribu-
tion given in[16] is used, and a single relaxation parameter - . Q .
Ap (BGK approximation is used in the equation that de- o o
scribes the advection and diffusion of color. In addition to  F!G. 1. Schematic view of the bounce-forward collision rule.
mass and momentum, color is also a conserved quantity. Solid squares represent solid S|t§s, open f;qules represent fluid sites,

The basic variables of the model are the distribution func-and solid circles represent particles. Solid lines correspond to the
tions N, corresponding to the mean occupation number o]tluid-so_lid interface, sit_uated_halfway betwee_n solic_i and_fluid sites.
particlels, in the direction at a given node, and; , describ- Arrow lines represent incoming and outcoming trajectories.
ing the relative amount of cold20]. Since the evolution of dimensional problems in Helle-Shaw cells are described in
the total population is independent of the color of the parterms of the two-dimensional LB model by the modification
ticles, the hydrodynamic equations for mass and momenturaf the forcing to account for the viscous drag of the top and
may be obtained as in the simple fluid case. In other wordshottom plates of the ce[22—24. Therefore, molecular dif-
the time evolution of theN;’s is independent of the\;’'s.  fusion in the transverse direction is not described and similar
These evolution equations are then coupled to the evolutioBC'S can be applied to all fields. In the others, where fluid
of color, through the local fluid velocity. Thus, the diffusive flows in complex geometrie$l3] or in narrow channels
behavior of the fluids is superimposed on the underlying?ounded by solid surfac¢25,26], the above-mentioned dis-
Navier-Stokes dynamics. tinction in BC's would be desirable.

The fact that the information on mass density and flow is _-ere we will use a different set of BC's for color concen-
decoupled from the information on color opens the possibil{ration to ensure a zero color gradient normal to the solid
ity of imposing different boundary conditio(8C's) on the  Surface. To this end, we implement a mirror-reflection con-
populations describing fluid flowN;) and those describing 9ition o bounce-forwardBF) rule, where upon collision
advective-diffusive transportY;). Specifically, for a nonslip only the normal component of the pa}rnclle velocity is

) ' changed. In Fig. 1 we show a schematic view of the BF

BC? on the SOI'.d surface, we shall use the simplest Irnplemen(';ollision rule. The last case was chosen arbitrarily, due to its
tation of particle exclusion—the bounce-back ruBB),

very simple implementation, among the different possibili-

where the particles incident on the boundary are propagateghs that satisfy the mirror-reflection-type condition. For in-
back into the directions from which they came. On the othelstance, it would be also consistent to split the incoming con-

hand, for color concentration a different macroscopic BC iscentration into the two neighboring sites.
desired, i.e., a zero color gradient normal to the solid surface. physically, BB has th&approximatg effect of making
both components of the fluid velocity vanish at the solid,
o - consistent with the nonslip condition. A passive tracer may,
Diffusion boundary conditions however, diffuse along a solid boundary, so the relevant con-
As mentioned, we will study tracer dispersion in narrow dition is that only the normal component of the flux vanish at
gaps between self-affine solid surfaces. Thus, in this situs@ solid. The bounce-forward rule is the obvious LB realiza-

tion, the BC’s imposed at the solid surfaces becomes a crdion Of the physical boundary condition.
cial aspect of the simulation method. To answer the question whether this BC improves the LB

In previous works concerning lattice BGK models for method for miscible fluids we shall present the results of
miscible fluids, BC’s imposed on color concentration at Solidnumerlcal simulations using both BB and BF in two different

boundary were not distinguished from those used to simulatsnuatlor.]s; diffusion and Taylor hydrodynamic dispersion in
) e two-dimensional straight channel.

fluid flow. In these situations, the relevance of the BC at

solid surfaces varies depending on the particular system un-
der consideration. In some cases, when simulating bulk pro-
cesses, as if20,21], there is no need to treat the BC sepa-
rately, and periodic boundary conditions on all distribution ~ We will exhibit a comparison between BB and BF, in two
functions may be used. In other cases, fully three-applications, diffusion and Taylor dispersion in a two-

IIl. COMPARISON BETWEEN BB AND BF RULES:
NUMERICAL SIMULATIONS
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dimensional channel. These situations are particularly imporparticles the situation is inverted. Bounce back at solid sur-
tant in terms of addressing the validity and accuracy of thdaces makes the tracer particles mostly arrive from the center
above-mentioned boundary conditions, particularly if one isof the channel, and a vertical concentration gradient devel-

interested in further use of them in complex geometries.  0ps. Thus, after several time steps, particles diffuse from the
center toward the solid surfaces. At large times, the vertical

gradient vanishes and the concentration becomes homoge-
neous across the channel.

Diffusion was studied varying the channel widthfrom Using BB, the diffusion coefficient strongly depends on
4 to 40 in grid sites, in a channel of length=512, with  the vertical size of the channel. Diffusive transport close to
periodic BC's used at both ends. In the LB model the diffu-the solid surfaces is reduced due to the BB rule, yielding a
sion coefficient in bulk is given by smaller diffusion coefficient compared to bulk diffusivity.

This effect becomes negligible when the gap is large enough
1 1 or when the diffusivity is sufficiently small. In Fig. 3 we
Ao E)' @) show the dependence of the diffusion coefficigmstative to
D) on the size of the gap and bulk diffusivity. We also

Varying the relaxation parameter, we have also studied show that simulations using BF gii&= D, for any size and
diffusive transport for a set of bulk diffusivities ranging from Dp,.
D,=8.8x10 % to D,,=1.5. As mentioned, the undesired effects due to BB boundary

In all simulations for both boundary rules, the obtainedCOﬂditiOﬂS become less Significant at small diffusivities.
depth-averaged color concentration displays a Gaussian di¥/hen usingD ,=8.8x10™* the deviation of the numerical
tribution, and the mean square displacement grows linearlyalue from the expected one is within 1%. However, the use
in time. However, the vertical dependence of the ConcentraOf small diffusion coefficients allows |arge concentration
tion, as well as the diffusivity values, strongly depends ongradients, which may result in numerical instability. Discrep-
the BC used. While the concentration remains vertically ho2ncies between theory and simulations have been reported, in
mogeneous using BF, in Fig. 2 we show that using BB yieldghe LB model of miscible fluids, for values dd,, below
the undesired effect of a transient vertical variation of color.10™* [20]. Also, for values ofD,, below 10°*, oscillations
Two different situations can be distinguished in Fig. 2,between negative and positive values of concentration have
namely, close to the mean position of tracer parti¢lgsor ~ been observefP3]. Therefore, the region of parameter space
far from it. (Note that(x) is constant in tim&.At (x) [Fig. =~ where the model is fairly independent of the particular
2(a)], the initial concentration gradient drives the tracer par-choice of the boundary condition rule is very close to being
ticles. Due to the bounce-back rule, particles close to théumerically unstable.
surface remain there longer, and the relative tracer concen-
tration builds up. Shortly after, particles close to the surface
diffuse toward the center of the channel, and eventually the Finally, we compute the asymptotic hydrodynamic disper-
concentration gradient in the vertical direction is smoothedsion when a mean flow is set within the channel. In this case,
out. On the other hand, far from the mean position of tracetlispersion has two different contributions, one due to mo-

A. Diffusion in a two-dimensional straight channel

1
Dm:§

B. Taylor dispersion
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FIG. 4. Longitudinal dispersion coefficient as a function of the
eclet number squared. Solid line corresponds to @Y. Dashed
ne also corresponds to E¢R) but usingD measured in diffusion
simulations(instead ofD,,). Solid squares and circles refer to the
numerical results using BF and BB, respectively. The channel grid
is 16X 1024 and the diffusion coefficient in bulk 3,,=0.1.

FIG. 3. Normalized diffusion coefficiedd/D,, as a function of
the vertical gap size. Solid symbols correspond to simulations usin
BB (for different bulk diffusivitie3. Open circles correspond to
simulations using BF andp=0.2. Results were obtained in a
straight channel of length=512. The initial condition is a Gauss-
ian color distribution centered at=256 and a widthr?=4.0.

lecular diffusion and the other due to spatial variations of thdargest discrepancy is 0.3%. Similar results showing slightly

fluid velocity, namely, Taylor dispersiofil]. Asymptotic smaller numerical values than theoretical ones have been
analysis of Taylor dispersion in a two-dimensional channePreviously reported26]. _

of constant widthH and mean flow velocityJ gives the As a conclusion to this section we may say that the effect

exact formula for the longitudinal dispersion coefficigél, of using the_same BC on fluid an(_j color distributions slows
down the diffusive transport. This effect becomes appre-

1 U2?H? ciable when the system is narrow enough or the diffusion
Dy=Dm+ 210 D, (20 coefficient is large.
Introducing the Pelet number, which accounts for the IV. SELF-AFFINE NARROW FRACTURES
relative magnitude of the convective and diffusive transport,

Pe=UH/D,,, the previous equation can be rewritten as We briefly review here the mathematical characterization
of self-affinity. A more detailed discussion can be found in

P& our previous wor27]. We consider a rock surface without
Dy=Dm| 1+ 2_10) ' ©) overhangs, whose height is given by a single-valued function

z(x,y), where the coordinatesandy lie in the mean plane

Concerning the numerical simulations, whether the BFof the fracture. Self-affine surfacg28g] display scale invari-
rule is implemented or not, the Taylor regime for the longi-ance with different dilation ratios along different spatial di-
tudinal dispersion is expected to hold. However, the effectiveections(in contrast to self-similar surfaces which stretch the
diffusivity is slowed down when a BB collision at solid sur- coordinates with equal ratips Experiment indicates that
faces is used. Thus, as the diffusivity is smaller, the charadsotropy can be assumed in the mean plane, implying that
teristic homogenization time in the transverse direction bethere is only one nontrivial exponent relating the dilation
comes larger. In other words, we may expect @jto hold,  ratio in the mean plane to the scaling in the perpendicular
but whereD,, is replaced by the effective diffusion coeffi- direction, i.e.,
cient in the channeD, as measured in diffusion simulations
using BB rule(Sec. lIl A). In Fig. 4 we compare the numeri- 2(%,y)=N" Z(AX,\Y), (4)
cal results with Eq(2). There is very good agreement be-
tween the numerical results and the Taylor theory in bothwhere({ is the roughness or Hurst exponé®]. In all cases
cases, using BB and BF as boundary rules. Let us remarthe roughness exponent is chosen as the experimentally ob-
that solid and dashed lines corresponds exactly to(Bg. served valug=0.8.
with no adjustable parameter, and the only difference be- We shall emphasize the limiting situation of narrow frac-
tween them is the molecular diffusivity value. These resultdures, in which the two surfaces are very close to each other.
confirm the previous one, showing that the BB rule dimin-Consider the situation in which a rock of lateral sizds
ishes the diffusive transport and consequently enlarges thigactured and the two surfaces are simply displaced by a
longitudinal hydrodynamic dispersion. A departure from Eq.distanceH<L, perpendicular to the mean fracture plane,
(2) at large Pelet numbers can also be observed, where thavith no relative shift. The fluctuationéhe difference be-
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tween the maximum and minimum values D)f scale asR ~ concepf32]. It is a common characteristic in fluid transport
~L¢ If H is the width of the fracture, then the limiting in porous media, and in fractures in particular, that the actual
situation corresponds te>H. path followed by the fluid is very tortuous. In our fractured

In narrow fractures, the correlation between the two sidegwo-dimensional systems, a purely geometrical definition of
is an important feature for the dispersion process, and wortuosity can be given, by considering the ratio of the short-
consider two possibilities. We first study fractures where theest continuous paths between any two points within the frac-
upper surface has been simply translated a distelnoermal  ture to the length of the system projected on to the main
to the mean plane, so that the local apertafg,y) equals plane[33]. It is clear that, for narrow fractures, this ratio will
the constant. Alternatively, the two surfaces may have a approach the ratio between the length of the surface profile in
relative lateral displacement in the mean fracture plane, the xz plane to the distancé&x between the two points.
accompanied by a displacemdtin the perpendicular di- Then, if |, is the true length between the two points sepa-
rection, so that the two surfaces do not overlap. In this caseated a distancA&x, we can write, for the tortuosity,
the local aperture is given by the random variable |

e

ag(x.y)=2z(x+d,y)— z(x,y) +h. (5) T=3ix ©)

It turns out[30] thatd is the lateral correlation length for  The tortuosity factofT accounts for the reduction in dif-

fluctuations in the aperture, in the sense thglx,y) and fusivity, due to irregular geometries,
aq4(x+Ax,y) decorrelate foAx>d.

Using the self-affine scaling law for the correlation func- Ax2  [Ax\212 D,
tion, D—7=<—> Z:F (10

le

2¢
o2(AX)=([z(X,y) — z(x+ AX,y)]?) = ¢(|)(¥) , (6) whereD,, is the free bulk molecular diffusion coefficient.
For the previous equation to be meaningful one should
wherel is a microscopic length, say, a grain size, such thathave a constant value 6flthat 1S, mdependenfc alx. This is
' ' ' the case when the effective lendthdepends linearly on the
Ug(”: (1) ~12, @ size of the systemAx. F_or self-similar surfaces, the relation
betweenl, and Ax defines the fractal dimensiob;, |,
we can estimate « AxP1. On the other hand, it has been shown that, for self-
affine surfaces, there are several distinct definitions of fractal
x\ ¢ dimension[34—-36. However, for length scales well abole
AZ(AX)=z(x,y) —z(x+Ax,y)~I (I_) : (8 all fractal dimensions beconi®;= 1 [34—36, andl is pro-
portional to Ax. In this work we considet as the lower

For length scaledx<! it can be seen from the previous cutoff of the self-affine behavior, and therefore, we only ob-
relation thatAZ>Ax (given that¢ is smaller than L On the ~ serve the situation where the tortuosity factor is constant. For
other hand’ for |ength Sca|$x>|, it is clear thatAZ the numerica”y generated Self'affine SurfaceS used in thIS
<Ax. We considerl as the lower cutoff of the self-affine Work, we tested the dependence of the effective lefgtin
behavior in a real fractured system. This fact largely deterAx. Using the method of “dividers’[29] to measure., we
mines the convective-diffusive behavior, as we will discussobtain, in all cases, a linear relation between the dividers
later. openinge andl (e), i.e.,Dg=1.

In this paper we restrict ourselves to the two-dimensional The fact thatT is constant has some important conse-
case where the surface is invariant in tgedirection, duences on diffusive transport. First, the relation between
z(x,y)=2(x), and the mean flow, when present, is forced inmean square displacement and time should be lifeser
the x direction by a constant pressure drop. In a subsequererhaps a transient timeSecond, the distribution of tracer
paper we will extend these calculations to fully three-concentration should be asymptotically Gaussian and inde-
dimensional fractures, but it is convenient, both conceptuallpendent of the initial distribution of tracer. Finally, the cor-
and in numerical simulations, to regard the system as havinfgction due to tortuosity is strictly geometrical and therefore
a translationally invariant third dimension. it should be independent on the actual value of the free bulk

We use statistically self-affine surfaces with periodic molecular diffusivityD,.
boundary conditions. The periodicity is not a physically es- In Fig. 5 we show the linear dependence of the mean
sential ingredient here, but has some calculational advarfquare displacement on time for different values of the dif-
tages in alleviating finite-size effects. The surface is generfusion coefficient. Many other simulations with different val-
ated by a Fourier synthesis method, based on power-laies ofD, andH were performed, and in all cases a linear

filtering of arrays of independent random numbga,31.  relation was obtained. In Fig. 6 we show how the same
Gaussian distribution is approached at long times, starting
V. DIFEUSION IN NARROW FRACTURES from three different initial distribution of tracer particles. Fi-

nally, in Fig. 7 we show that the tortuosity factor is a strictly
In this section we study diffusion in two-dimensional self- geometrical property, being clearly independent of the diffu-
affine fractures. The approach will be based on the tortuositgivity of the tracer particles.
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ture of the channel. A segment of leng} is roughly
straight WhenAZ(§H)~I(§H/I)5 is a small fraction ofH,

which yields
H 1/¢
§|~'<|—) :

Returning to the entire fracture, eagp channel is ori-
ented at some anglé; with respect to the mean plane and
has effective aperture;=Hcosj, and Iengthg"‘zgulcosﬂ.
Thus, we write, for the total length of the channel,

(11)

<(x—<x>) >

(12

N N
Le= ;1 gh: §||i2l cos (6.

Time

FIG. 5. Mean square displacement as a function of time forFinally, taking into account thall=L/&>1 is the number
different diffusion coefficients. Simulations were performed in aof channels, we can convert the sum into an average over the
system of length. =512 and separation between surfakes 4. distribution of angles, and write, for the tortuosity,

¢§?+Azz<§>> 1(az<§|>)2

—— =1+ ,

4 2\ ¢
(13)

Tortuosity dependence on the fracture width .
In the previous section, we showed that the effect of sur-T= fz(cosfl( 0)>=<
face roughness on diffusion can be accounted for by a purely
geometrical property of the system, the tortuosityHow-
ever, it remains to analyze the dependenc& of geometri-
cal parameters that describe the system. Of particular impowhereai(gu)=(AZZ(§”)> [see Egs(6) and(8)] and, in or-
tance is the dependence Dfon the width of the fracturél. der to estimate the cosine, we have used the fact that the
The theoretical analysis presented here will closely followchannels present small vertical fluctuations.
the kind of approximation used {27], where the fracture is A more precise evaluation can be obtained based on a
divided into a sequence of quasilinear segments at varyin@Gaussian distribution of heighf&7], as supported by experi-
orientation angles. First, we estimate a typical sijgén the  mental measuremenit30] and, in fact, the actual distribution
direction of the mean flow over which the fluctuations in thegiven by our numerical procedure for generating self-affine
vertical direction are small compared to the effective apersurfaces. In this case, the angular average is given by

T T 0.10 T T v T T
o1s | I8 =0 ] 1220
Y
~ gaussian 1 0.08 |-
e gaussian ) 4
g — lorentzian i \ g
S o010 P 1 Soost
= &
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002 1 FIG. 6. Evolution of tracer
concentration for different initial
0005 e conditions: a Gaussian distribu-
X tion, two Gaussians centered at
0.05 ; ; . . ; 0.04 —————— Xo= 256+ 3, and a Lorentzian dis-
N =100 =200 tribution squared. The initial dis-
004 | ] a persion is in all cases;=4.0 and
0.03 | m _
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FIG. 7. Diffusion coefficient in the fracturd3 as a function of FIG. 8. Correction to the diffusivity due to tortuosity of the
the free bulk diffusion coefficierD,,. The system length and width fractures as a function of the gap The solid line corresponds to
areL=>512 anoH=16. Solid circles correspond to simulations with Eq. (16) with C;=0.9. The simulation parameters dre=512, Ap
Dn=5.0x10"%, 1.67x1072, 1.0x107!, 8.77x10°%, and 8.38 =0.5, and/=0.8.

X 1074, The solid line corresponds to ELO) with a tortuosity

2_
T°=0.93. introduces a discrepancy with the continuous approach,

IVak: . which is more important for small vertical fluctuations in the
1\ / el BT 0 B surface height. However, we also show in Fig. 9 the theoret-
(cos 0>_f P(AZ) 1+( § ) = U(Z’Z’X) ical correction to diffusive transport, computing the tortuos-
(14) ity factor directly through the numerically generated surfaces
9 o _ instead of using the asymptotic analysis. In this case good
wherex=[¢£/203(£))], andU(a;b;x) is the confluent hy-  agreement is recovered and the only adjustable parameter
pergeometric function of the second kif8¥,38. Therefore, ¢, ~2 is again of order 1and in agreement with previous
we can get a more convincing evaluation of the tortuosity ofresylits[27]). Similar results were obtained using several in-
a narrow two-dimensional self-affine fracture using the leadtermediate values for the surface fluctuations in height,
ing terms in the asymptotic representationlbffor largex  \yhere the reduction in diffusivity is always in agreement
and Eq.(11) for the value of§, with the correction due to the tortuosity of the channels. In
addition, we found that the decrease in diffusivity is, in all
(¢(|) H (zgz)/gl
WE

|2
To compare the previous relation with the numerical re-
sults, let us first recast it in terms of the diffusion coefficient,

H)(zz—z)/g

T= (15)

10

Dy~ D
Dm

%ch

| , (16)

where we have added an adjustable paran@temwhich is
expected to be of order 1.

In Fig. 8 we present the decrease in the diffusivity due to
the tortuosity of the channel as a function of the distance
between the opposite surfackls We find good agreement
for the predicted exponent 2-2)/{=—1/2 (the roughness
exponent is{=0.8). The only adjustable parameter is the
coefficientC,, which is found to be&C;~0.9, in good agree- " o T3
ment with the expected value. H

In Fig. 9 we present the numerical results obtained for g 9. Correction to the diffusive transport when the surface
surfaces with smaller amplitude of the roughnesmaller  qyctuations are small. The solid line is the correction due to the
value ofl). In this case it is clear that the exponent differs tortuosity of the channel, measured from the numerically generated
from the predicted value. We believe that this discrepancyurfaces. The dashed line corresponds to the observed reduction in
comes from the discretization of the surface in the numericadiiffusivity when the fluctuations are larger and the dependence is
simulations. This discrete nature of the numerical surfacesorrectly reproduced by E16).
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FIG. 10. Streamlines inside a fracture of width=16, length FIG. 11. Dispersion coefficient as a function of theleenum-

L=512, and no lateral shift between complementary surfaces. NotB(,er squared. Solid Ime corresponds to the best flt.usmg(ﬂﬁ,
that the closer the angle of the surface#¢2, the narrower the with D, and A as adjustable parameters. Dashed line corresponds

effective width becomes. tj)lT(;aonr dispersion in a straight channel with equal apertdre

cases, well described by a power léwhere the power-law Now, assuming that we have a winding channel of length
exponent decreases slightly with the amplitude of the surface_ effective aperture for convective transpdrt and actual
fluctuationg, for which we have no explanation. apertureA=H/T (given by volume conservationwe may
apply the same reasoning as in Sec. Il B to get the disper-
VI. DISPERSION IN NARROW FRACTURES sion coefficient. After replacing by the width of the effec-

n thi i " th f Tavior hvdrod tive channeH/T, U by the mean velocity in the convective
n this section we address the case ot Taylor nydro y'part of the channeUH/A, and taking into account the tor-
namic dispersion in narrow fractures. First, we will analyze

; ) tyosity, we obtain
the case where the two sides of the fracture are dlsplace(lil y

normally to the mean fracture plane, and then we will turn to D,
the case where there is a lateral shift as well. D=
When the two complementary surfaces are simply dis-

placed vertically by a distandé<<L, the vertical aperture of

the system is constant everywhere. Nevertheless, the ﬂO\éIS
field differs from one in a straight channel, due to variations
in the local width of the channel normal to the mean flow
direction. In Fig. 10 we show a set of streamlines inside &
fracture, where the effect of the varying effective aperture ofdi s
the fracture is evidentaperture normal to the mean flow
Moreover, in[27] we show that the complex geometry of the

fracture gives rise to low-velocity zonésose to depressions length of the system it =512, and the relaxation parameter

and cornerk reducing the permeability of the system. In used isAp=1.9. The molecular diffusivity and the lambda

order to describe the dispersion process we need to obtain & . : -
measure of the fraction of the system that is subject to Conparameters obtained from the best fit &rg=(8.86+0.01)

_3 . . [ .
vection. To this end we will make use of the parameter X 10" which differs by only 1% from the theoretical value,

[39,4Q, which is directly related to transport and measuresand A=13.4:0.1. On the other hand, from the flow rate

the dynamically connectegiart of the pore space in porous computed in numerical simulations and estimating the per-

media[41,47. Following Ref.[42], we write A in terms of meability by Eq.(17), Vr\]/(fa getA :fls.3t0.2.h f
the permeability and tortuosity of the system, We now turn to shifted surfaces. In the presence of a

small lateral shiftd between complimentary surfaces, most
A2 of the previous discussion remains valid. The local aperture
k= _ (17) now varies with position anHl is the average aperture of the
1212 channel. The difference in height between surfaces at any
point x along the channel is of ordet*, while the vertical
Note that defining a characteristic length as the ratio betweeaxcursion of the fracture between points separated a distance
pore volumeV and surface are8 would yield V/S=H/T  Ax is (Ax)%. Therefore, at large length scaldx>d, the
# A, which does not depend on the effects exerted on théacture may be considered as a winding channel of length
fluid flow by the complex geometry of the fracture. L. and effective aperturd and where the ratio between the

P& H\2
1550\ AT

F=) . (18
Thus, to see how well théd parameter can be used to
timate the dispersion, we will compare the values obtained
both from dispersion measuremefEy. (18)] and from the
ermeability[Eq. (17)].

In Fig. 11 we show the numerical results obtained for the
persion coefficient when varying the injection rate. The
linear behavior shows that, as expected, Taylor dispersion is
governing tracer spreading. The fracture gapis 16, the
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FIG. 13. Mean square displacement of tracer particles as a func-
tion of time, in a single fracturémean aperturéd =16, shift be-
gquween surfaces =8, lengthL =512, mean velocity~1073, D,
=0.008 771). Solid line and open circles correspond to numerical

FIG. 12. Dispersion coefficient as a function of theckRenum-
ber squared. Solid line corresponds to the best fit using(Eg),
with D, and A as adjustable parameters. Dashed line correspon
to Taylor dispersion in a straight channel with equal apertdre

=16. MC and LB simulations, respectively. Dashed line is the best linear
fit for large times, i.e., the asymptotic linear spreading of the tracer
(D=7.4x10"9).

length of the channdl, and the system length is the tor-
g © y g In order to validate the dispersion results obtained by

tuﬂilt)léifaci%r'we show the dispersion coefficient, as a func-- o> of the LB method, we shall now compare them with
. 9. 1< P ’ results computed via a Monte CarC) approach to the
tion of the Pelet number. The two fracture surfaces are ver-

. . ) dispersion process. In the MC method, one follows the dis-
tically displaced byH =16 and laterally shifted by=8. A j3cement of a large number of particles, or random walkers,
expected, we observed a linear dependence, in agreemefpying in a two-dimensional fracture. The motion of each
with Taylor-like spreading. From the_bgest fit of the numerical pa icle is a combination of the effects of molecular diffusion
results we obtaiD,= (8.5 0.1)x 10", which differs less 54 convectiorfwe assume, as in LB simulations, that tracer

that 3% from the theoretical one\§=1.9), andA=14.6  aricles move independently of each ofhén time At, a
+0.2, whereas by means of flow rate data computed in NUsarticle is displaced according to

merical simulations and Eq17) for the permeability, we
obtainA=11.7+0.5. Ax=u(x)At+n(4D,,At)2 (19

Even though estimated values &f are in fairly good . o )
agreementwithin a 20% discrepangy it is also clear that \ivhereu(x) is the velocity field obtained by the LB method,
the A parameter fails to completely predict the enhancemeni is a unit vector with random orientation, and the amplitude
of dispersion due to the complex geometry of the fracturesof the random steps has been chosen so that the variance of
Nevertheless, we believe that the presence of low-velocitgny coordinate is R,,At [44—44. Boundary conditions at
zones is the only possible feature that accounts for the ersolid surfaces are implemented as[##], where those ran-
hancement in the spreading of tracer particles. dom steps that would take the particle outside the channel

Let us note that the uncertainty in the computed disperare suppressed. The sequence of steps is repeated while re-
sion coefficient is considerably larger than in the case whereording the distancéx from the initial position of the par-
there is no lateral shift. It has been shown, in threedicle. The process is repeated for a large number of particles
dimensional fractures and under a lubrication approximatiomnd average values are computed.
for the velocity field, that a lateral shift yields geometric ~ We found excellent agreement between the two methods.
dispersion for tracer particles advected along the fld@i. In Fig. 13 we compare the mean square displacement as a
This effect is due to a different mean velocity along differentfunction of time obtained using LB and MC methods. The
streamlines. In our case, the two-dimensional nature of thagreement is evident, and it can be seen that after releasing
fractures prevents the presence of geometric dispersiod®® particles in the MC simulations, the noise is negligible.
given that the height-averaged velocity is constant throughBoth simulations corresponds to a fracture of mean aperture
out the system. However, an analogous effect appears whéth= 16, lengthL=512, and a lateral shift between surfaces
averaging over different fractures, giving rise to a large dis-d=8. It is also interesting to note, in Fig. 13, a change in the
persion in the computed mean velocity and dispersion coefslope at tima~ 20 000, which approximately corresponds to
ficient. In fact, from the previous discussion an uncertaintythe characteristic time for transverse diffusion across the ap-
proportional to the mean velocity is expected when averagerture 7o~ H?/2D ,~ 15 000. Therefore, this marked change
ing the dispersion coefficierftorresponding to a geometric in slope is showing the transition towards Taylor-like spread-
dispersion term in fully three-dimensional fractyres ing at times larger thamp .
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VII. CONCLUSIONS

In the first place, we have presented a set of boundary
conditions to describe diffusive transport within the lattice-
Boltzmann method. We tested this boundary rule in two situ-
ations, simple diffusion and Taylor dispersion in two-
dimensional straight channels. We showed that the proposed
bounce-forward rule improves the accuracy of the method
and does not possess the undesirable effects of the bounce-
back rule, i.e., dependence of the diffusion coefficient on the
aspect ratio of a straight channel and transient concentration
gradients near solid walls. Even though the accuracy might
be recovered in the BB case using small diffusivities, we
showed that this option leads the simulations towards the
i numerical instability border.

pe We then turn to study diffusive transport in two-

FIG. 14. Dispersion coefficient at low Blet numbers. Different dimensional self-affine fractures. First, we showed that the
results correspond to different simulation methods. Solid circlesslowdown in diffusive transport can be accounted for by the
correspond to LB method. Squares correspond to MC simulationpurely geometric tortuosity factor. Our numerical simula-
where the velocity was computed using LB. Triangles correspond téions have verified all the implications of this result, that is,
MC simulations using the velocity field given by the lubrication |inear spreading in time, Gaussian distribution of tracer, and

approximation. independence of geometrical effects on the actual value of
_ _ i the diffusivity. Second, using analytic arguments in the limit
Dispersion at small Pelet numbers of small aperture fluctuations, we have obtained an expres-

In a straight channel, the presence of convection increasegon for the tortuosity in terms of the fracture gap and the
the dispersion of tracer particles. The same effect is usualliurst exponent characterizing the fracture surface. Numeri-
found in porous media, including fracture systems. Howevergal simulations verify the validity of the theoretical approach
in the case where surfaces are laterally shifted and at vergven when the discrete nature of the surface seems to affect
small Pelet number, we observed the opposite behaviorthe asymptotic scaling law.

That is, the presence of convective transport inside the frac- Finally we studied tracer dispersion in fractures in the
tures reduces the dispersion of tracer particles. This effegiresence or not of a lateral shift between complementary
can be observed in Fig. 12; at very small Pe the dispersiogyrfaces. In both cases we showed that tracer spreading can
coefficient grows as the flow rate decreases. In order to valihe described as analogous to Taylor-like dispersion in a
date this observation we simulate the dispersion process W"ftraight channel. In the case without a lateral shift we
two other methods. The first one is the MC method presentedhgwed that the enhancement in dispersion can be mostly
before. The second method is a variation of the MC whereynqerstood assuming an effectively reduced aperture for
instead of using the velocity field computed by means of LBquid transport due to the rugosity of the surface. The

S|mulat|on_s, we use Iubr_lcatu_)n approximation fOT Ve.loc't'es'parameter measuring this effective aperture, and computed
In the lubrication approximation the velocityx,z) is given " -
from permeability measurements, was shown to be similar to
by . . .
that estimated from dispersion measurements. We also pre-
6 sented a result showing a decrease in tracer dispersion when
u(x,z)= 3 Z[H(x)—z], (20 convective transport is set in the fracture. This last observa-
H(x) tion was obtained in the framework of three different nu-
merical approaches.

whereH(x) is the local aperture of the fracture.

In Fig. 14 we show the results obtained using the three
different methods in a range of Pe from O to 4. The agree- ACKNOWLEDGMENTS
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